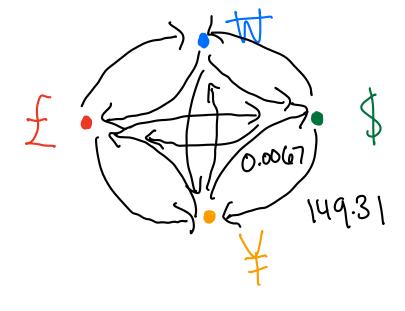
CS 331, Fall 2025 Today: - Arbitrage
Lecture 13 (10/13) - A* search
- Maxflow
- Moitrage (Part V, Section S.1) - Flow reductions

G= (ViEiW) exchange network

Metices = currencies

W(mv) = exchange | unit of u for v



Question: Can we make trades and end up

Where of currency than stated?

(arbitrage)

Equippently, 7 cycle C s.t.

We 7/?

des: reduction to negative-veight cycle

True 71 (=>) \(\frac{1}{2} \left(-\log(we) \right) \left(0)

Make new graph G'= (V, E, W')

Detect NW(in O(mn) time => arbitrage in G

At Search (Part V, Section 5.2)

Motivation: Dijkstra solves SSSP What if we only care about s-t shortest path? Goal: Pull tout of queue as fast as possible

would like
to deemphanize

Seaching using
into about t

(Ded: Modity edge weights using h: V) (heuristic/ price function)

Assign shorter paths to vertices close to t W/O Changing the shortest paths!

Thefine
$$G' = (V, E, w')$$
 $w'(u,v) = w(uv) - h(u) + h(v)$

savings when cost of leasing v

(laim: fix $v \in V$. All $s - v$ paths p have

 $v \in P$
 $v \in$

Takeaways: · Shortest paths unchanged

· Shortest path distances Change by h(v) - h(s)

What is a good h?

1) Smiller for verties her t

2) all edge weights in 6 normeg: "Consistent"

(qussi-) Example: metric h(v) = m(v,t)

> distance function, triangle Energ.

e.g. Eulidem distance

 $h(v) = \|v - t\|$

11 Strzight - line distance"

Why are metrics consistent?

$$W_{(u,v)} - m(u,t) + m(v,t) \ge 0$$

 $W_{(u,v)} - h(u) - h(v)$
 $W_{(u,v)} - h(u)$
 $W_{(u,v)} - h(u)$

Interestinsly, Can use Shortest yith metric o to make negative edges all namegative Floyd-Warshall: O(N3) APSP Johnson: O(mnlog(n)) APSP 1) Compute 211 (S,V) = M(V) ()(MN)(m) 2) Form Gh 3) Run Dijkstra from all V ((mn (03(M))

Hows (Pat V, Section 4.1)

One of most powerful reduction tools
"Now much Stuff can be sent in 6?"

Flow f E RE is fessible if

0 & fe & Ce Yee &

10/20

10/10

0/15

5/15

Net Har @ VEV:

$$\frac{\partial f(v)}{\partial v(v)} = \frac{1}{2} \int_{v(v)}^{v(v)} f(v(v)) - \frac{1}{2} \int_{v(v)}^{$$

Simple Observation:

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

We all f an s-t flow it:

•
$$\partial f(s) = -\partial f(t)$$

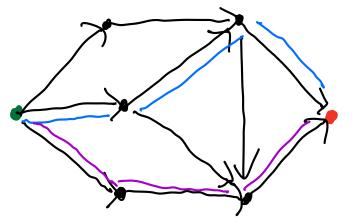
S-+ Maxitlow problem:
Max Of(5) S.t. f is teasible S-7 flow
total "Stuff" pro). by source s
Next time: how to solve mixflow
Today: applications!
Flow reductions (Part V, Section S.3)
(dez: you want to solve graph problem on G
Instead, Show you can recover solution
from Maxtlow on some other (5'
Proof of carectness: Convert ary
(=>) fexilde solin 6 to fessible flow in 6'
(E) fessible flow in G' to fessible sol in G

Dissoint paths

[npt: 6= (V,E), 5,+ E)

Output: Max # d:sioint S-+ paths

Share no elge



We'll show next class if all capacities integer, so is maxflow

Claim: it's just the S-+ maxflow value (#)
if every edge has capacity Ce = 1

(=) Given k disjoint paths, Can Create feasible flow f with 2f(S)=k

(E) Given flow of value 1c, repeatedly "peel off" s-t paths until no more 2f(5)

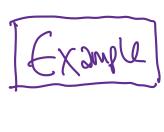
Bipartite Matchins

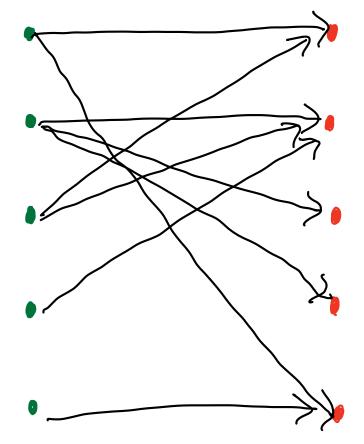
Input: bipartite graph (LUR, E)

(all edges (Uni) EE have well, ver)

Output: Max [M] over matchings M

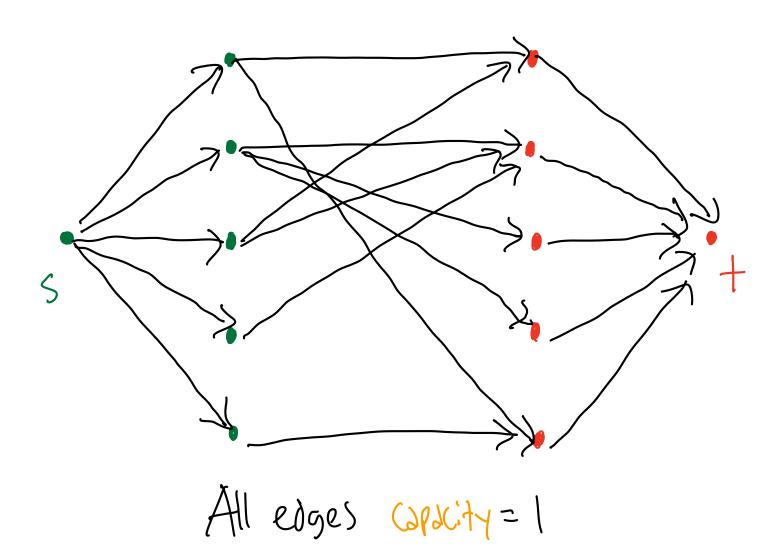
Output: Max (M) over matchings M
(every vertex belons to 51 edge)





(in Stable matching, Part IV, Section 5, all pairs LXR are available =) max matching = $\frac{h}{2}$)

Reduce to How!



(=) Given matching, can extend to How of some value

(E) Given flow, Where is each (S, N) going? Extend path to t, creaters one matched pair

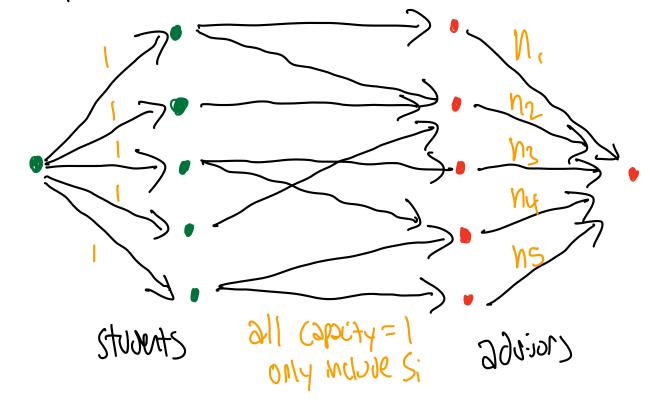
Generalized Matchins

Above example has many extensions.

Say me have... a advisors b students

(20h 2) vior i E[2] (2n...

- Only advise students S; \subseteq (b) (specific expurse)
- · only his Ni slots 2 wildle



Maxflow value = max # advisable students